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Abstract--One of the most significant challenges with modern
intrusion detection systems is the high rate of false positives
they generate. In order to lower this rate, we propose to re-
duce the amount of traffic sent to the intrusion detection sys-
tem via a filtering process termed stream splitting. Each
packet arriving at the system is treated as belonging to a con-
nection, with each connection assigned to a network stream.
A network stream is sent to an analysis engine tailored spe-
cifically for that type of packet data. To demonstrate a
stream-splitting capability, both an extendable multi-
threaded architecture and prototype were developed. Results
from testing the prototype demonstrate its ability to capture
traffic with a low rate of packet loss at network speeds up to
20 Mbps, and that the stream splitter correctly implements
the traffic separation scheme specified for use in the tests.

I. INTRODUCTION

A. Background

In general there are two types of intrusion detec-
tion systems (IDS): signature- and anomaly-based systems.
The former rely on a database of known attacks with
which to compare network traffic in an effort to determine
if an attack is in progress. In contrast, the latter rely on the
ability to determine what characterizes normal traffic and
compare sensed network traffic to what is expected. There
are several challenges associated with improving the per-
formance and capabilities of both types of IDS. One of the
challenges identified in the results of the study reported in
[2] is to reduce the number of false positives generated by
such systems.

One possibility for addressing the aforementioned
challenge is to apply a type of filtering termed “IDS
stream splitting,” which consists of classifying each packet
as a member of a stream when it is encountered. Network
traffic can be viewed as a collection of connections. For
the purpose of this paper, a connection is a data path be-
tween a system on the outside of the network to be pro-
tected and a system inside the network. A connection can
be characterized by the source IP address, the destination
IP address, and the service that is in use. Each packet can
then be associated with either an existing active connec-
tion, or a new Never-Before-Seen (NBS) connection. This
classification allows for the stream of network traffic to be
split up into sub-streams based on type of service (e.g.,
http, ftp) or some other criterion.

The results of a recent industry study indicate that
the traffic on a production-level network can cause many
IDSs to fail [5]. These systems consume all available re-
sources with logging processes or false alarms. In contrast,
a stream splitter can in theory reduce the amount of traffic
going to any one IDS in a logical grouping of such sys-
tems—a special type of sensor network—by distributing
the workload amongst the IDS. In the worst case, all traffic
would be of the same type and as such would be directed
to a single IDS. If the splitter can distribute the traffic to
any extent, ceteris paribus, system up-time should in the-
ory be as good as or better than that of the single-channel
approach. In other words, a single channel introduces a
bottleneck, whereas the splitter can reduce the likelihood
that any one channel to an IDS will reach its saturation
point.

The overall detection scheme can be implemented
using primarily commercial-off-the-shelf (COTS) prod-
ucts, with the exception of the implementation for the
splitter, providing for both ease of deployment.

B. Related Efforts

In [8], previous efforts to reduce false positive
rates are listed; this list includes placing the IDS behind a
firewall, tuning the signatures used for detection, and us-
ing network analysis to filter the false positives from the
alarms that are generated. Placing the IDS behind a fire-
wall is one of the easiest reduction techniques to imple-
ment. Performing network analysis on generated alarms is
both time consuming and requires a detailed understanding
of the network. The effect of using a stream splitter is
similar to that produced by placing a firewall between the
IDS and the network stream, albeit an intelligent firewall.
However, a major difference between a firewall and our
splitter is that no traffic will be dropped; it can only be
diverted.

The results of the 1999 DARPA Intrusion Detec-
tion Evaluation performed by MIT Lincoln Laboratory
brought to light some of the problems that plague modern
IDS [1]. The signature-based systems were able to alert the
operator for a number of the data set attacks. Unfortu-
nately, recognizing these attacks in the presence of heavy
network-traffic loads, and recognizing a legitimate alarm
amongst a sea of false positives remains a challenge. We
hypothesize that by using a stream splitter the performance
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of a COTS IDS can be improved. The black-box nature of
the stream splitter allows for ease of deployment in a wide
range of detection schemes. Through the use of a stream
splitter, it is likely that operators will be able to more eas-
ily detect attacks on high-traffic networks and also see a
reduction in the number of false positives due to both the
reduction in traffic and the ability to finely tune their ex-
isting IDSs to the type of traffic each IDS is monitoring.

C. Stream Splitter Overview

The splitter operates through the use of sensors.
There are two types of sensors: active and passive. Active
sensors examine packets and then communicate the results
back to a sensor control structure, whereas passive sensors
simply receive traffic and act on the data in the packet
unilaterally.

The use of these two types of sensors allows the
splitter to act as a simple stream isolator or to be the base
for a more elaborate traffic-separation scheme, for instance
routing packets based on a level of trust. In this case, the
splitter could treat each packet as part of a connection and
assign a trust ranking to the connection in the range [0..1]
using a fuzzy logic model; fuzzy logic (see, for example,
[6] for a primer on this subject) can be used to partially
associate an object with a set of objects. In [7], fuzzy set
theory was used to determine the confidence of an IDS
that an event had been correctly classified as an intrusion.

For network intrusion detection, the challenge of
paramount importance becomes that of discerning the
trustworthiness of each distinct stream of packets. For the
splitting operation to be effective, each packet must be
assigned a trust level. The trust level is based on the type
of connection and the number of times the connection has
been seen in a given time frame. If no operator action is
taken, then over time as the connection is frequently en-
countered, the connection will be assigned ever increasing
levels of trust until it is no longer sent to the IDS evaluat-
ing un-trusted traffic. All NBS connection traffic is viewed
as un-trusted. Traffic not sent to the un-trusted traffic IDS
will be sent to a trusted-traffic IDS to ensure that all net-
work traffic is continuously monitored.

When the splitter acts as a stream isolator, all traf-
fic is sent to a sensor for isolation. If the traffic matches
what the sensor is isolating, then further analysis is done.
If the traffic does not match, then it is simply ignored by
the sensor. In this way multiple sensors can be employed
to examine the same data, allowing for only those sensors
that find the data useful to act on it. Isolators, being pas-
sive sensors, route traffic themselves; thus, there is no ad-
ditional information that must be communicated back to
the sensor control structure.

The idea for investigating the technical feasibility
of using splitters is founded on the principles of Huffman
coding [3]. The fewer the number of times a specific pat-
tern is detected, be it a connection type or a specific con-
nection, the more information that is present simply by the
existence of that item. For example, a mail server that
connects to a network every day to deliver mail is not as

suspicious as a NBS telnet connection. Consequently, traf-
fic associated with this mail server can be directly for-
warded.

A stream splitter also allows for a detection
scheme to grow. For instance a more comprehensive net-
work monitoring system could be built with the addition of
an anomaly-based IDS to an existing signature-based IDS:
this would provide a network anomaly detection capability
in addition to the ability to monitor network traffic for
attack signatures.

II. STREAM-SPLITTING MODEL

A. Streams

A router takes a network stream as an input and
then splits it into multiple streams, typically according to
the destination IP address. Just as a router increases a net-
work’s performance, by parsing traffic, a stream-splitting
mechanism can increase a network’s intrusion-detection
performance. By parsing traffic before it is sent to an IDS,
each IDS can be optimized for processing specific types of
streams.

In the context of a computer network, traffic can
be split into streams by using a number of different met-
rics. The split can be based on source, destination, type of
service, protocol, etc. The ability to split a traffic stream
into sub-streams can, in theory, increase the effectiveness
of traffic management.

Network information can be categorized to fa-
cilitate its use by the stream splitter. Each connection is
viewed as a category, and each packet belongs to a con-
nection: this association can be used to infer additional
information about a packet.

It is this additional information that the stream
splitter relies on, whether performing fuzzy classification
or stream isolation; this is what distinguishes the stream
splitter from a router. Existing commercial routers, to our
knowledge, do not make a judgment as to the trustworthi-
ness of the packets they route. The stream isolators, apart
from performing standard router-style splitting, can also
split traffic based on how often the connection has been
seen. In this way a low-data-rate, infrequent connection
can be separated out from the main network stream for a
detailed evaluation. This ability to single out slow, infre-
quent connections, such as stealth scans, distinguishes the
stream splitter from other network analysis tools.

B. High Level Design

To get the desired level of performance, a multi-
threaded design was necessary. In general there are three
parts to the system. Each part is given its own thread of
execution.

• The Packet-Capture Engine

• The Packet-Analysis Engine

• The Packet-Injection Engine
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The packet-capture engine captures traffic from a
network. This traffic is then passed to the analysis engine
where it can be analyzed by the appropriate sensors. The
final step is to route the packet based on the results of the
analyses. The high-level view of information flow is
shown in Fig 1. In addition to these three threads of exe-
cution, each sensor is given its own thread of execution.

Fig. 1. Stream Splitter Information Flow

Fig. 2 depicts the major components of the stream
splitter and their interactions; although it is not explicitly
shown here, there can be multiple active and passive sen-
sors attached to a dispatcher. The design of the stream
splitter is derived from an extensible architecture that ac-
commodates a wide spectrum of user-defined traffic-sepa-
ration schemes. Additional sensors may be readily at-
tached to the splitter as needed. In addition, the architec-
ture provides for both designing protections systems with
both dynamic separation schemes and reusing stream-
splitter and IDS code for unique network configurations.

Fig. 2. UML Class-Interaction Diagram

1) Packet Capture

As noted earlier, the capture engine runs in its
own persistent thread. The analysis engine takes longer to
analyze each packet than the capture engine takes to cap-
ture it from the wire. Further, the capture engine must be
able to keep up with network traffic. A requirement to be
met in the design described here is to be able to capture as
many packets as Snort (www.snort.org), a well-known
network-analysis engine. As with Snort, the stream split-
ter is designed for Ethernet traffic.

In order to keep up with network traffic the cap-
ture engine reads frames from the wire and places them
into a buffer. Once a frame is buffered the capture engine
is finished with it and is free to capture the next frame.
This allows the system to handle bursts of traffic without
significant loss. Packets are then removed from the buffer
by the analysis engine. A mutex lock for the buffer is nec-
essary to prevent simultaneous access by the capture en-
gine and the analysis engine. The sequence of events for
the capture of a packet is shown in Fig. 3.

Fig. 3. Frame Capture Sequence

2) Analysis Engine

The core of the stream splitter is a number of sen-
sors. Each sensor looks for a particular metric in the
stream of traffic. If the sensor finds that the current packet
is part of the sub-stream it is intended to evaluate then it
takes the appropriate action. The use of sensors allows for
a fine granularity in the type of information that is used to
split a stream since a sensor can be made to look at very
specific traffic properties. As an example, if web traffic is
the metric of interest, a sensor that evaluates all packets
that have a source or destination port equal to 80 would
accomplish this.

Sensors can be either active or passive. An active
sensor will send data to a shared memory location where
the system will then act upon the result of the sensor. In a
trust scheme where a sensor evaluates a packet for level of
trustworthiness, the return would be a trust value. A stream
isolator on the other hand simply routes the packet and the
splitter does not need to know anything about what the
sensor did.

Active sensors are used for any traffic separation
scheme requiring multiple sensors to collaborate with each
other, such as in a trust-based scheme. These sensors are
active because they do not route the packet but must send
back information to some control loop that will then make
the routing decision. Each active sensor looks at a par-
ticular metric and communicates back a trust value based
on that metric. Several active sensors may work together
to perform a more thorough evaluation of a packet.

When more than one active sensor is used, an ad-
ditional control structure is needed to gather the aggregate
result and make the routing decision. In the prototype,
fuzzy logic was used in both the individual sensor analysis
and the final routing decision. Fuzzy logic is favorable for
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the speed with which a decision can be reached. More pre-
cision may be possible using Bayesian statistics; however
the speed of fuzzy logic computations outweighs the bene-
fit of the additional accuracy provided by a Bayesian
model.

Passive sensors are used for stream isolation.
These sensors process each packet: if the packet does not
match the criteria the sensor is looking for, then no action
is taken. Otherwise, the sensor performs further analysis.
For instance a web traffic isolator would look for all TCP
traffic with a source or destination port of 80. Once the
packet is identified as being of interest, the sensor may
perform additional analysis. In the version of the isolator
described here, rate analysis is performed on traffic that
matches the criteria of the isolator. Routing of the packet is
then done based on the results of this rate analysis.

The system was designed with the isolation
scheme separated along the same lines as the ISO OSI
model. There is a layer-3 isolator that will separate layer-3
traffic out of a stream. There is also a layer-4 isolator that
will separate out layer-4 traffic. There is no benefit in per-
forming isolation at layer-2 since this data only represents
the current link information. Any isolation above layer-4 is
application-specific and requires an indepth knowledge of
the applications running on the network. Adding this func-
tionality would be a matter of extending the layer-4 class
to accommodate the types of applications being isolated.

The analysis engine consists of the dispatcher and
sensors shown in Fig. 1. The dispatcher queries the buffer
and then updates all sensors with the new data obtained
from the buffer. To ensure that all the sensors are working
with the same information, they work in lock step. Though
each sensor is independent, one sensor may not begin to
work on the next frame until all sensors have completed
their analysis of the current one.

A way to achieve this is to use a lock for each
sensor similar to the buffer lock used in the capture engine.
The dispatcher locks all the sensors and then updates them
with the latest data from the capture buffer. The dispatcher
then unlocks the sensors, which allows them to lock them-
selves and process the new information. On completion of
its analysis, a sensor will unlock itself, allowing the dis-
patcher to once more take control. Fig. 4 illustrates this
concept.

Fig. 4. Analysis Sequence

To ensure that a sensor has processed the infor-
mation, there is a variable that is reset each time the sensor
is updated and set, by the sensor, on completion of analy-
sis. This is necessary because there is no guarantee that a
sensor thread will run before the dispatcher tries to relock
that sensor. Fig. 5 demonstrates this problem situation in
which the sensor is re-locked prior to the completing the
analysis. This results in the sensor loosing synchronicity
with the other sensors. The dispatcher, thinking that all
sensors have completed the analysis of the previous
packet, will send the next packet, resulting in the second
packet not being analyzed.

Fig.5. Incorrect Analysis Sequence

3) Injection Engine

Once a frame is captured and analyzed, it is then
replayed back to the network. There are two methods of
handling the injection. First, the frame can be replayed out
of an interface, maintaining the integrity of the layer-2
data. Although this is a simple solution, it requires a sepa-
rate interface for each output stream. An example of this
injection type is depicted in Fig. 6.

Fig. 6. One Interface Per Stream

The second method explored for replaying and
routing outbound traffic is to adjust the destination MAC
address. By adjusting the destination MAC address to the
address of the interface on the IDS the stream is destined
for, several streams may be sent out the same interface and
then fed into a switch that will handle the stream separa-
tion. Fig. 7 illustrates this.
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Fig. 7. Multiple Streams Using One Interface

Implementation of this method requires a buffer
for the outgoing frames, as one frame may belong to sev-
eral streams. Once a sensor has determined the destination
for a packet and the MAC is overwritten, the frame is then
placed into a buffer from which the injection engine reads
and replays the Ethernet frames. A lock on the buffer en-
sures that only one thread is accessing the buffer at a time,
allowing all sensors requiring the ability to inject traffic to
use the same injection engine. Using one injection engine
eliminates both the possibility that more than one entity
will try to control the injection mechanism and the need
for an additional mutual exclusion lock surrounding the
injection device.

III. TESTING AND RESULTS

The goal was to show that a robust architecture
for traffic separation could be implemented. To accom-
plish this two things that had to be demonstrated: (1)the
splitter must be able to keep up with network traffic and
(2) the splitter must implement a separation scheme that
would not be possible with a router. Two tests were de-
vised for this purpose: a capture-efficiency test and a test
to measure the accuracy of traffic separation.

A. Capture Efficiency

To test the ability of the splitter to capture network traffic,
Tcpreplay (tcpreplay.sourceforge.net) was used to replay a
tcpdump file from the 1999 DARPA IDS Evaluation con-
ducted at MIT Lincoln Laboratory. Specifically, the week-
one Tuesday inside-dump data was used. Tcpreplay gives
the option of specifying how fast to replay the file. The
testing started at 5 Mbps and then increased in 5 Mbps
increments up to 75 Mbps. After the file had been com-
pletely replayed, the capture engine was examined to see
how many packets it had captured. This test was run with
the splitter, Snort 1.9 and Snort 2.0. The base configura-
tion of Snort was used in both cases. Snort 1.9 was tried
with both ASCII and binary logging, while Snort 2.0 used
only binary logging. All tests were run on a Macintosh
dual 1.42 GHz G4 processor with 2 GB of RAM.

This first test measured how many packets the
splitter could capture out of the total packets sent. Analysis
of the packets takes longer than the capture process, so
once the stream had been sent, analysis was halted and the
number of packets sent to the buffer of the splitter was
taken to be the number of packets that was captured. This
does not reflect the number of packets that can be captured
and processed during continuous operation. For the Snort

test, only packets that were analyzed were counted since if
a packet is dropped prior to analysis it will not be ana-
lyzed. Snort does not buffer packets like the stream split-
ter.

Snort, implemented in C, slightly outperformed
the stream splitter. The results of this test are detailed in
Fig. 8. Only the Snort 1.9 data is shown, as there was vir-
tually no difference between versions of Snort 1.9 and 2.0
in this test. After running the test it became apparent that a
hardware solution to capture traffic is necessary for any
bandwidth greater than 30 Mbps, which corresponds to
roughly 10,000 packets per second.

Packet Capture Efficiency
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Fig. 8. Packet Capture Efficiency

B. Traffic Separation

To prove that the splitter can implement a traffic-
separation scheme, an IDS test bed was used. This test bed
consists of a Smart Bits 6000 chassis and six two-port
Terametric traffic-generation blades. Each blade can be
configured to send out a variety traffic. For this experi-
ment, two ports were used, one for fast traffic generation
and one for slow traffic generation. The output of the
splitter was passed to an eight-port Linksys switch to sepa-
rate the traffic. Connected to the switch was two ports on a
Dell 2650 computer running Microsoft Windows 2000
Server, as shown in Fig. 9.

Fig. 9. Test Bed Setup
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The splitter was configured to separate TCP traf-
fic utilizing port 80. The window size was set to ten sec-
onds with a high-low traffic threshold of 100 packets;
hence, any connection with greater than ten packets per
second would be sent to the fast web traffic stream. The IP
addresses were chosen so that when viewed in a large table
they would stand out from one another. The test traffic is
given in Table 1; MAC information is not shown because
the splitter overwrites the destination MAC address in the
process of routing the traffic.

Table 1. Traffic Stream Description

Traffic
Stream

Src. IP Dest. IP Src. Port Dest. Port

Fast 10.10.1
0.1

10.10.10.
2

80 11000

Slow 192.168
.10.10

190.168.
10.20

80 12000

Configuration of the splitter consisted of setting
the following parameters:

- MAC addresses for the two interface on the win-
dows server

- A threshold level of 100

- A service port of 80

- A ten-second window

- A protocol type of TCP

Ethereal was used to capture traffic on both of the
monitored interfaces for sixty seconds. This experiment
was run three times, with the corresponding results shown
in Table 2.

Table 2. Traffic Capture Test Results

Test Number Fast Traffic
Packets

Slow Traffic
Packets

1 6000 120

2 5900 120

3 5900 120

The results of the experiments are in accord with
expectations. Since the starting and stopping of Ethereal
could not be synchronized with the traffic generators, the
fast traffic should be within 100 packets of 6000 and the
slow traffic should be within two packets of 120.

IV. CONCLUSION

We have shown a robust architecture for a net-
work stream splitter capable of parsing traffic based on a
large number of metrics. The parsing of traffic potentially
allows the IDSs to be tuned for each stream’s specific traf-

fic type, thus increasing the network’s intrusion detection
performance.

Preliminary results described in [7] indicate that
fuzzy logic can be used to reduce the false positive rate
generated by an IDS. The stream splitter provides a robust
architecture that could potentially be used to apply such a
traffic separation scheme.

In addition, further work is needed to explore the
extent to which the stream splitter can be used to apply
multiple traffic isolation and inspection schemes
simultaneously in real time.

Lastly, it remains to be demonstrated whether one
can improve the effectiveness of software decoys—con-
structs used to implement deception strategies and tactics
(vid. [4])—by fusing data from the stream splitters with
data collected by both the decoys’ probes (i.e., traces of
system-level calls and the responses of suspicious proc-
esses to the actions of the decoys) and the supervisors of
the decoys (i.e., aggregate information about the interac-
tion among decoys and suspicious processes).
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